Commit 8751d2b2 by 文靖昊

rag工具优化

parent 9c21eae7
......@@ -69,12 +69,12 @@ class TxtDoc:
def find_like_doc(self,item:list):
print(item)
i0 = item[0]
if len(item)>1:
if len(item)>=1:
item = item[1:]
print(item)
query = "select text,matadate FROM txt_doc WHERE text like '%"+i0+"%' "
query = "select text,matadate FROM txt_doc WHERE matadate like '%"+i0+"%' or text like '%"+i0+"%' "
for i in item:
query+= "or text like '%"+i+"%' "
query+= "or matadate like '%"+i+"%' or text like '%"+i0+"%' "
print(query)
self.db.execute(query)
answer = self.db.fetchall()
......
from typing import List,Union
from langchain_openai import ChatOpenAI
from langchain.agents import AgentExecutor,create_structured_chat_agent
from langchain_core.prompts.chat import ChatPromptTemplate,HumanMessagePromptTemplate,SystemMessagePromptTemplate,MessagesPlaceholder
from langchain_core.prompts import PromptTemplate
import langchain_core
from src.pgdb.knowledge.similarity import VectorStore_FAISS
from src.server.get_similarity import QAExt
from src.pgdb.knowledge.k_db import PostgresDB
from src.pgdb.knowledge.txt_doc_table import TxtDoc
from langchain.chains import LLMChain
from src.agent.tool_divisions import AdministrativeDivision
from src.agent.rag_agent import RAGQuery
from src.config.consts import (
EMBEEDING_MODEL_PATH,
FAISS_STORE_PATH,
INDEX_NAME,
VEC_DB_HOST,
VEC_DB_PASSWORD,
VEC_DB_PORT,
VEC_DB_USER,
VEC_DB_DBNAME,
SIMILARITY_SHOW_NUMBER,
prompt_enhancement_history_template,
prompt1
)
base_llm = ChatOpenAI(
openai_api_key='xxxxxxxxxxxxx',
openai_api_base='http://192.168.10.14:8000/v1',
model_name='Qwen2-7B',
verbose=True,
temperature=0
)
vecstore_faiss = VectorStore_FAISS(
embedding_model_name=EMBEEDING_MODEL_PATH,
store_path=FAISS_STORE_PATH,
index_name=INDEX_NAME,
info={"port": VEC_DB_PORT, "host": VEC_DB_HOST, "dbname": VEC_DB_DBNAME, "username": VEC_DB_USER,
"password": VEC_DB_PASSWORD},
show_number=SIMILARITY_SHOW_NUMBER,
reset=False)
ext = QAExt(base_llm)
k_db = PostgresDB(host=VEC_DB_HOST, database=VEC_DB_DBNAME, user=VEC_DB_USER, password=VEC_DB_PASSWORD, port=VEC_DB_PORT)
k_db.connect()
llm_chain = LLMChain(llm=base_llm, prompt=PromptTemplate(input_variables=["history","context", "question"], template=prompt1), llm_kwargs= {"temperature": 0})
tools = [AdministrativeDivision(),RAGQuery(vecstore_faiss,ext,PromptTemplate(input_variables=["history","context", "question"], template=prompt_enhancement_history_template),_db=TxtDoc(k_db),_llm_chain=llm_chain)]
input_variables=['agent_scratchpad', 'input', 'tool_names', 'tools']
input_types={'chat_history': List[Union[langchain_core.messages.ai.AIMessage, langchain_core.messages.human.HumanMessage, langchain_core.messages.chat.ChatMessage, langchain_core.messages.system.SystemMessage, langchain_core.messages.function.FunctionMessage, langchain_core.messages.tool.ToolMessage]]}
metadata={'lc_hub_owner': 'hwchase17', 'lc_hub_repo': 'structured-chat-agent', 'lc_hub_commit_hash': 'ea510f70a5872eb0f41a4e3b7bb004d5711dc127adee08329c664c6c8be5f13c'}
messages=[
SystemMessagePromptTemplate(prompt=PromptTemplate(input_variables=['tool_names', 'tools'], template='Respond to the human as helpfully and accurately as possible. You have access to the following tools:\n\n{tools}\n\nUse a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).\n\nValid "action" values: "Final Answer" or {tool_names}\n\nProvide only ONE action per $JSON_BLOB, as shown:\n\n```\n{{\n "action": $TOOL_NAME,\n "action_input": $INPUT\n}}\n```\n\nFollow this format:\n\nQuestion: input question to answer\nThought: consider previous and subsequent steps\nAction:\n```\n$JSON_BLOB\n```\nObservation: action result\n... (repeat Thought/Action/Observation N times)\nThought: I know what to respond\nAction:\n```\n{{\n "action": "Final Answer",\n "action_input": "Final response to human"\n}}\n\nBegin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation')),
MessagesPlaceholder(variable_name='chat_history', optional=True),
HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['agent_scratchpad', 'input'], template='{input}\n\n{agent_scratchpad}\n (reminder to respond in a JSON blob no matter what)'))
]
prompt = ChatPromptTemplate(
input_variables=input_variables,
input_types=input_types,
metadata=metadata,
messages=messages
)
agent = create_structured_chat_agent(llm=base_llm, tools=tools, prompt=prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools,verbose=True,handle_parsing_errors=True)
history = []
h1 = []
h1.append("攸县年降雨量")
h1.append("攸县年雨量平均为30ml")
history.append(h1)
h1 = []
h1.append("长沙县年降雨量")
h1.append("长沙县年雨量平均为50ml")
history.append(h1)
prompt = ""
for h in history:
prompt += "问:{}\n答:{}\n".format(h[0], h[1])
print(prompt)
res = agent_executor.invoke({"input":"以下历史对话记录: "+prompt+"以下是问题:"+"攸县、长沙县、化隆县和大通县谁的年平均降雨量大"})
print("====== result: ======")
print(res)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment