Commit 493cdd59 by 陈正乐

代码格式化

parent 9d8ee0af
...@@ -2,19 +2,19 @@ ...@@ -2,19 +2,19 @@
# 资料存储数据库配置 # 资料存储数据库配置
# ============================= # =============================
VEC_DB_HOST = 'localhost' VEC_DB_HOST = 'localhost'
VEC_DB_DBNAME='lae' VEC_DB_DBNAME = 'lae'
VEC_DB_USER='postgres' VEC_DB_USER = 'postgres'
VEC_DB_PASSWORD='chenzl' VEC_DB_PASSWORD = 'chenzl'
VEC_DB_PORT='5432' VEC_DB_PORT = '5432'
# ============================= # =============================
# 聊天相关数据库配置 # 聊天相关数据库配置
# ============================= # =============================
CHAT_DB_HOST = 'localhost' CHAT_DB_HOST = 'localhost'
CHAT_DB_DBNAME='laechat' CHAT_DB_DBNAME = 'laechat'
CHAT_DB_USER='postgres' CHAT_DB_USER = 'postgres'
CHAT_DB_PASSWORD='chenzl' CHAT_DB_PASSWORD = 'chenzl'
CHAT_DB_PORT='5432' CHAT_DB_PORT = '5432'
# ============================= # =============================
# 向量化模型路径配置 # 向量化模型路径配置
...@@ -41,4 +41,4 @@ INDEX_NAME = 'know' ...@@ -41,4 +41,4 @@ INDEX_NAME = 'know'
# ============================= # =============================
# 知识相关资料配置 # 知识相关资料配置
# ============================= # =============================
KNOWLEDGE_PATH = 'C:\\Users\\15663\\Desktop\\work\\llm_gjjs\\兴火燎原知识库\\兴火燎原知识库\\law\\pdf' KNOWLEDGE_PATH = 'C:\\Users\\15663\\Desktop\\work\\llm_gjjs\\兴火燎原知识库\\兴火燎原知识库\\law\\pdf'
\ No newline at end of file
"""各种大模型提供的服务""" """各种大模型提供的服务"""
\ No newline at end of file
import os import os
from typing import Dict, Optional,List from typing import Dict, Optional, List
from langchain.llms.base import BaseLLM,LLM from langchain.llms.base import BaseLLM, LLM
from langchain.callbacks.manager import CallbackManagerForLLMRun, Callbacks from langchain.callbacks.manager import CallbackManagerForLLMRun, Callbacks
import torch import torch
from transformers import AutoTokenizer, AutoModel,AutoConfig,AutoModelForCausalLM from transformers import AutoTokenizer, AutoModel, AutoConfig, AutoModelForCausalLM
from transformers.generation.utils import GenerationConfig from transformers.generation.utils import GenerationConfig
from pydantic import root_validator from pydantic import root_validator
class BaichuanLLM(LLM): class BaichuanLLM(LLM):
model_name: str = "baichuan-inc/Baichuan-13B-Chat" model_name: str = "baichuan-inc/Baichuan-13B-Chat"
quantization_bit: Optional[int] = None quantization_bit: Optional[int] = None
tokenizer: AutoTokenizer = None tokenizer: AutoTokenizer = None
model: AutoModel = None model: AutoModel = None
def _llm_type(self) -> str: def _llm_type(self) -> str:
return "chatglm_local" return "chatglm_local"
@root_validator() @root_validator()
def validate_environment(cls, values: Dict) -> Dict: def validate_environment(self, values: Dict) -> Dict:
if not values["model_name"]: if not values["model_name"]:
raise ValueError("No model name provided.") raise ValueError("No model name provided.")
model_name = values["model_name"] model_name = values["model_name"]
tokenizer = AutoTokenizer.from_pretrained(model_name,use_fast=False,trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained( model = AutoModelForCausalLM.from_pretrained(
model_name, model_name,
torch_dtype=torch.float16, torch_dtype=torch.float16,
...@@ -43,7 +40,7 @@ class BaichuanLLM(LLM): ...@@ -43,7 +40,7 @@ class BaichuanLLM(LLM):
print(f"Quantized to {values['quantization_bit']} bit") print(f"Quantized to {values['quantization_bit']} bit")
model = model.quantize(values["quantization_bit"]).cuda() model = model.quantize(values["quantization_bit"]).cuda()
else: else:
model=model.half().cuda() model = model.half().cuda()
model = model.eval() model = model.eval()
...@@ -51,14 +48,9 @@ class BaichuanLLM(LLM): ...@@ -51,14 +48,9 @@ class BaichuanLLM(LLM):
values["model"] = model values["model"] = model
return values return values
def _call( def _call(self, prompt: str, stop: Optional[List[str]] = None,
self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs) -> str:
prompt: str, message = [{"role": "user", "content": prompt}]
stop: Optional[List[str]] = None, resp = self.model.chat(self.tokenizer, message)
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
message = []
message.append({"role": "user", "content": prompt})
resp = self.model.chat(self.tokenizer,message)
# print(f"prompt:{prompt}\nresponse:{resp}\n") # print(f"prompt:{prompt}\nresponse:{resp}\n")
return resp return resp
\ No newline at end of file
import os import os
import requests import requests
from typing import Dict, Optional,List,Any,Mapping,Iterator from typing import Dict, Optional, List, Any, Mapping, Iterator
from pydantic import root_validator from pydantic import root_validator
import torch import torch
from transformers import AutoTokenizer, AutoModel,AutoConfig from transformers import AutoTokenizer, AutoModel, AutoConfig
import langchain import langchain
from langchain.llms.base import BaseLLM,LLM from langchain.llms.base import BaseLLM, LLM
from langchain.cache import InMemoryCache from langchain.cache import InMemoryCache
from langchain.callbacks.manager import CallbackManagerForLLMRun, Callbacks, AsyncCallbackManagerForLLMRun from langchain.callbacks.manager import CallbackManagerForLLMRun, Callbacks, AsyncCallbackManagerForLLMRun
import aiohttp import aiohttp
import asyncio import asyncio
# 启动llm的缓存 # 启动llm的缓存
# langchain.llm_cache = InMemoryCache() # langchain.llm_cache = InMemoryCache()
...@@ -26,17 +27,17 @@ class ChatGLMLocLLM(LLM): ...@@ -26,17 +27,17 @@ class ChatGLMLocLLM(LLM):
tokenizer: AutoTokenizer = None tokenizer: AutoTokenizer = None
model: AutoModel = None model: AutoModel = None
def _llm_type(self) -> str: def _llm_type(self) -> str:
return "chatglm_local" return "chatglm_local"
# @root_validator() # @root_validator()
def validate_environment(cls, values: Dict) -> Dict: @staticmethod
def validate_environment(values: Dict) -> Dict:
if not values["model_name"]: if not values["model_name"]:
raise ValueError("No model name provided.") raise ValueError("No model name provided.")
model_name = values["model_name"] model_name = values["model_name"]
tokenizer = AutoTokenizer.from_pretrained(model_name ,trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True) config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
# model = AutoModel.from_pretrained(model_name, config=config, trust_remote_code=True) # model = AutoModel.from_pretrained(model_name, config=config, trust_remote_code=True)
if values["pre_seq_len"]: if values["pre_seq_len"]:
...@@ -56,7 +57,7 @@ class ChatGLMLocLLM(LLM): ...@@ -56,7 +57,7 @@ class ChatGLMLocLLM(LLM):
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict) model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
else: else:
model = AutoModel.from_pretrained(model_name, config=config, trust_remote_code=True).half().cuda() model = AutoModel.from_pretrained(model_name, config=config, trust_remote_code=True).half().cuda()
if values["pre_seq_len"]: if values["pre_seq_len"]:
# P-tuning v2 # P-tuning v2
model = model.half().cuda() model = model.half().cuda()
...@@ -64,7 +65,7 @@ class ChatGLMLocLLM(LLM): ...@@ -64,7 +65,7 @@ class ChatGLMLocLLM(LLM):
if values["quantization_bit"]: if values["quantization_bit"]:
print(f"Quantized to {values['quantization_bit']} bit") print(f"Quantized to {values['quantization_bit']} bit")
model = model.quantize(values["quantization_bit"]) model = model.quantize(values["quantization_bit"])
model = model.eval() model = model.eval()
...@@ -72,30 +73,26 @@ class ChatGLMLocLLM(LLM): ...@@ -72,30 +73,26 @@ class ChatGLMLocLLM(LLM):
values["model"] = model values["model"] = model
return values return values
def _call( def _call(self, prompt: str, stop: Optional[List[str]] = None,
self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs) -> str:
prompt: str, resp, his = self.model.chat(self.tokenizer, prompt)
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
resp,his = self.model.chat(self.tokenizer,prompt)
# print(f"prompt:{prompt}\nresponse:{resp}\n") # print(f"prompt:{prompt}\nresponse:{resp}\n")
return resp return resp
class ChatGLMSerLLM(LLM): class ChatGLMSerLLM(LLM):
# 模型服务url # 模型服务url
url: str = "http://127.0.0.1:8000" url: str = "http://127.0.0.1:8000"
chat_history: dict = [] chat_history: dict = []
out_stream: bool = False out_stream: bool = False
cache: bool = False cache: bool = False
@property @property
def _llm_type(self) -> str: def _llm_type(self) -> str:
return "chatglm3-6b" return "chatglm3-6b"
def get_num_tokens(self, text: str) -> int: def get_num_tokens(self, text: str) -> int:
resp = self._post(url=self.url+"/tokens",query=self._construct_query(text)) resp = self._post(url=self.url + "/tokens", query=self._construct_query(text))
if resp.status_code == 200: if resp.status_code == 200:
resp_json = resp.json() resp_json = resp.json()
predictions = resp_json['response'] predictions = resp_json['response']
...@@ -103,28 +100,29 @@ class ChatGLMSerLLM(LLM): ...@@ -103,28 +100,29 @@ class ChatGLMSerLLM(LLM):
return predictions return predictions
else: else:
return len(text) return len(text)
@staticmethod
def convert_data(self,data): def convert_data(data):
result = [] result = []
for item in data: for item in data:
result.append({'q': item[0], 'a': item[1]}) result.append({'q': item[0], 'a': item[1]})
return result return result
def _construct_query(self, prompt: str,temperature = 0.95) -> Dict: def _construct_query(self, prompt: str, temperature=0.95) -> Dict:
"""构造请求体 """构造请求体
""" """
# self.chat_history.append({"role": "user", "content": prompt}) # self.chat_history.append({"role": "user", "content": prompt})
query = { query = {
"prompt": prompt, "prompt": prompt,
"history":self.chat_history, "history": self.chat_history,
"max_length": 4096, "max_length": 4096,
"top_p": 0.7, "top_p": 0.7,
"temperature": temperature "temperature": temperature
} }
return query return query
@classmethod @classmethod
def _post(self, url: str, def _post(cls, url: str,
query: Dict) -> Any: query: Dict) -> Any:
"""POST请求 """POST请求
""" """
...@@ -135,51 +133,55 @@ class ChatGLMSerLLM(LLM): ...@@ -135,51 +133,55 @@ class ChatGLMSerLLM(LLM):
headers=_headers, headers=_headers,
timeout=300) timeout=300)
return resp return resp
async def _post_stream(self, url: str,
query: Dict, @staticmethod
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,stream=False) -> Any: async def _post_stream(url: str,
query: Dict,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, stream=False) -> Any:
"""POST请求 """POST请求
""" """
_headers = {"Content_Type": "application/json"} _headers = {"Content_Type": "application/json"}
async with aiohttp.ClientSession() as sess: async with aiohttp.ClientSession() as sess:
async with sess.post(url, json=query,headers=_headers,timeout=300) as response: async with sess.post(url, json=query, headers=_headers, timeout=300) as response:
if response.status == 200: if response.status == 200:
if stream and not run_manager: if stream and not run_manager:
print('not callable') print('not callable')
if run_manager: if run_manager:
for callable in run_manager.get_sync().handlers: for _callable in run_manager.get_sync().handlers:
await callable.on_llm_start(None,None) await _callable.on_llm_start(None, None)
async for chunk in response.content.iter_any(): async for chunk in response.content.iter_any():
# 处理每个块的数据 # 处理每个块的数据
if chunk and run_manager: if chunk and run_manager:
for callable in run_manager.get_sync().handlers: for _callable in run_manager.get_sync().handlers:
# print(chunk.decode("utf-8"),end="") # print(chunk.decode("utf-8"),end="")
await callable.on_llm_new_token(chunk.decode("utf-8")) await _callable.on_llm_new_token(chunk.decode("utf-8"))
if run_manager: if run_manager:
for callable in run_manager.get_sync().handlers: for _callable in run_manager.get_sync().handlers:
await callable.on_llm_end(None) await _callable.on_llm_end(None)
else: else:
raise ValueError(f'glm 请求异常,http code:{response.status}') raise ValueError(f'glm 请求异常,http code:{response.status}')
def _call(self, prompt: str, def _call(self, prompt: str,
stop: Optional[List[str]] = None, stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
stream = False, stream=False,
**kwargs: Any) -> str: **kwargs: Any) -> str:
query = self._construct_query(prompt=prompt,temperature=kwargs["temperature"] if "temperature" in kwargs else 0.95) query = self._construct_query(prompt=prompt,
temperature=kwargs["temperature"] if "temperature" in kwargs else 0.95)
# display("==============================") # display("==============================")
# display(query) # display(query)
# post # post
if stream or self.out_stream: if stream or self.out_stream:
async def _post_stream(): async def _post_stream():
await self._post_stream(url=self.url+"/stream", await self._post_stream(url=self.url + "/stream",
query=query,run_manager=run_manager,stream=stream or self.out_stream) query=query, run_manager=run_manager, stream=stream or self.out_stream)
asyncio.run(_post_stream()) asyncio.run(_post_stream())
return '' return ''
else: else:
resp = self._post(url=self.url, resp = self._post(url=self.url,
query=query) query=query)
if resp.status_code == 200: if resp.status_code == 200:
resp_json = resp.json() resp_json = resp.json()
...@@ -189,18 +191,19 @@ class ChatGLMSerLLM(LLM): ...@@ -189,18 +191,19 @@ class ChatGLMSerLLM(LLM):
return predictions return predictions
else: else:
raise ValueError(f'glm 请求异常,http code:{resp.status_code}') raise ValueError(f'glm 请求异常,http code:{resp.status_code}')
async def _acall( async def _acall(
self, self,
prompt: str, prompt: str,
stop: Optional[List[str]] = None, stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any, **kwargs: Any,
) -> str: ) -> str:
query = self._construct_query(prompt=prompt,temperature=kwargs["temperature"] if "temperature" in kwargs else 0.95) query = self._construct_query(prompt=prompt,
await self._post_stream(url=self.url+"/stream", temperature=kwargs["temperature"] if "temperature" in kwargs else 0.95)
query=query,run_manager=run_manager,stream=self.out_stream) await self._post_stream(url=self.url + "/stream",
return '' query=query, run_manager=run_manager, stream=self.out_stream)
return ''
@property @property
def _identifying_params(self) -> Mapping[str, Any]: def _identifying_params(self) -> Mapping[str, Any]:
...@@ -209,4 +212,4 @@ class ChatGLMSerLLM(LLM): ...@@ -209,4 +212,4 @@ class ChatGLMSerLLM(LLM):
_param_dict = { _param_dict = {
"url": self.url "url": self.url
} }
return _param_dict return _param_dict
\ No newline at end of file
import os import os
import requests import requests
from typing import Dict, Optional,List,Any,Mapping,Iterator from typing import Dict, Optional, List, Any, Mapping, Iterator
from pydantic import root_validator from pydantic import root_validator
import torch import torch
from transformers import AutoTokenizer, AutoModel,AutoConfig from transformers import AutoTokenizer, AutoModel, AutoConfig
import langchain import langchain
from langchain.llms.base import BaseLLM,LLM from langchain.llms.base import BaseLLM, LLM
from langchain_openai import OpenAI from langchain_openai import OpenAI
from langchain.cache import InMemoryCache from langchain.cache import InMemoryCache
from langchain.callbacks.manager import CallbackManagerForLLMRun, Callbacks, AsyncCallbackManagerForLLMRun from langchain.callbacks.manager import CallbackManagerForLLMRun, Callbacks, AsyncCallbackManagerForLLMRun
class ChatGLMSerLLM(OpenAI): class ChatGLMSerLLM(OpenAI):
def get_token_ids(self, text: str) -> List[int]: def get_token_ids(self, text: str) -> List[int]:
if self.model_name.__contains__("chatglm"): if self.model_name.__contains__("chatglm"):
## 发起http请求,获取token_ids ## 发起http请求,获取token_ids
url = f"{self.openai_api_base}/num_tokens" url = f"{self.openai_api_base}/num_tokens"
query = {"prompt": text,"model": self.model_name} query = {"prompt": text, "model": self.model_name}
_headers = {"Content_Type": "application/json","Authorization": "chatglm "+self.openai_api_key} _headers = {"Content_Type": "application/json", "Authorization": "chatglm " + self.openai_api_key}
resp = self._post(url=url,query=query,headers= _headers) resp = self._post(url=url, query=query, headers=_headers)
if resp.status_code == 200: if resp.status_code == 200:
resp_json = resp.json() resp_json = resp.json()
print(resp_json) print(resp_json)
...@@ -30,10 +31,10 @@ class ChatGLMSerLLM(OpenAI): ...@@ -30,10 +31,10 @@ class ChatGLMSerLLM(OpenAI):
## predictions字符串转int ## predictions字符串转int
return [int(predictions)] return [int(predictions)]
return [len(text)] return [len(text)]
@classmethod @classmethod
def _post(self, url: str, def _post(cls, url: str,
query: Dict,headers: Dict) -> Any: query: Dict, headers: Dict) -> Any:
"""POST请求 """POST请求
""" """
_headers = {"Content_Type": "application/json"} _headers = {"Content_Type": "application/json"}
...@@ -43,4 +44,4 @@ class ChatGLMSerLLM(OpenAI): ...@@ -43,4 +44,4 @@ class ChatGLMSerLLM(OpenAI):
json=query, json=query,
headers=_headers, headers=_headers,
timeout=300) timeout=300)
return resp return resp
\ No newline at end of file
...@@ -2,7 +2,7 @@ import logging ...@@ -2,7 +2,7 @@ import logging
import os import os
from typing import Any, Dict, List, Mapping, Optional from typing import Any, Dict, List, Mapping, Optional
from langchain.llms.base import BaseLLM,LLM from langchain.llms.base import BaseLLM, LLM
from langchain.schema import LLMResult from langchain.schema import LLMResult
from langchain.utils import get_from_dict_or_env from langchain.utils import get_from_dict_or_env
from langchain.callbacks.manager import CallbackManagerForLLMRun, Callbacks from langchain.callbacks.manager import CallbackManagerForLLMRun, Callbacks
...@@ -15,6 +15,7 @@ from .ernie_sdk import CompletionRequest, ErnieBot, Message, bot_message, user_m ...@@ -15,6 +15,7 @@ from .ernie_sdk import CompletionRequest, ErnieBot, Message, bot_message, user_m
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
class ModelType(Enum): class ModelType(Enum):
ERNIE = "ernie" ERNIE = "ernie"
ERNIE_LITE = "ernie-lite" ERNIE_LITE = "ernie-lite"
...@@ -25,7 +26,7 @@ class ModelType(Enum): ...@@ -25,7 +26,7 @@ class ModelType(Enum):
LLAMA2_13B = "llama2-13b" LLAMA2_13B = "llama2-13b"
LLAMA2_70B = "llama2-70b" LLAMA2_70B = "llama2-70b"
QFCN_LLAMA2_7B = "qfcn-llama2-7b" QFCN_LLAMA2_7B = "qfcn-llama2-7b"
BLOOMZ_7B="bloomz-7b" BLOOMZ_7B = "bloomz-7b"
MODEL_SERVICE_BASE_URL = "https://aip.baidubce.com/rpc/2.0/" MODEL_SERVICE_BASE_URL = "https://aip.baidubce.com/rpc/2.0/"
...@@ -43,6 +44,7 @@ MODEL_SERVICE_Suffix = { ...@@ -43,6 +44,7 @@ MODEL_SERVICE_Suffix = {
ModelType.BLOOMZ_7B: "ai_custom/v1/wenxinworkshop/chat/bloomz_7b1", ModelType.BLOOMZ_7B: "ai_custom/v1/wenxinworkshop/chat/bloomz_7b1",
} }
class ErnieLLM(LLM): class ErnieLLM(LLM):
""" """
ErnieLLM is a LLM that uses Ernie to generate text. ErnieLLM is a LLM that uses Ernie to generate text.
...@@ -52,27 +54,23 @@ class ErnieLLM(LLM): ...@@ -52,27 +54,23 @@ class ErnieLLM(LLM):
access_token: Optional[str] = "" access_token: Optional[str] = ""
@root_validator() @root_validator()
def validate_environment(cls, values: Dict) -> Dict: def validate_environment(self, values: Dict) -> Dict:
"""Validate the environment.""" """Validate the environment."""
# print(values) # print(values)
model_name = ModelType(get_from_dict_or_env(values, "model_name", "model_name", str(ModelType.ERNIE))) model_name = ModelType(get_from_dict_or_env(values, "model_name", "model_name", str(ModelType.ERNIE)))
access_token = get_from_dict_or_env(values, "access_token", "ERNIE_ACCESS_TOKEN", "") access_token = get_from_dict_or_env(values, "access_token", "ERNIE_ACCESS_TOKEN", "")
if not access_token: if not access_token:
raise ValueError("No access token provided.") raise ValueError("No access token provided.")
values["model_name"] = model_name values["model_name"] = model_name
values["access_token"] = access_token values["access_token"] = access_token
return values return values
def _call( def _call(self, prompt: str, stop: Optional[List[str]] = None,
self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs) -> str:
prompt: str,
stop: Optional[List[str]] = None, request = CompletionRequest(messages=[Message("user", prompt)])
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
request = CompletionRequest(messages=[Message("user",prompt)])
bot = ErnieBot(_get_model_service_url(self.model_name), self.access_token or "", request) bot = ErnieBot(_get_model_service_url(self.model_name), self.access_token or "", request)
try: try:
# 你的代码 # 你的代码
...@@ -81,9 +79,8 @@ class ErnieLLM(LLM): ...@@ -81,9 +79,8 @@ class ErnieLLM(LLM):
return response return response
except Exception as e: except Exception as e:
# 处理异常 # 处理异常
print("exception:",e) print("exception:", e)
return e.__str__() return e.__str__()
@property @property
def _llm_type(self) -> str: def _llm_type(self) -> str:
...@@ -94,28 +91,25 @@ class ErnieLLM(LLM): ...@@ -94,28 +91,25 @@ class ErnieLLM(LLM):
# return { # return {
# "name": "ernie", # "name": "ernie",
# } # }
def _get_model_service_url(model_name) -> str: def _get_model_service_url(model_name) -> str:
# print("_get_model_service_url model_name: ",model_name) # print("_get_model_service_url model_name: ",model_name)
return MODEL_SERVICE_BASE_URL+MODEL_SERVICE_Suffix[model_name] return MODEL_SERVICE_BASE_URL + MODEL_SERVICE_Suffix[model_name]
class ErnieChat(LLM): class ErnieChat(LLM):
model_name: ModelType model_name: ModelType
access_token: str access_token: str
prefix_messages: List = Field(default_factory=list) prefix_messages: List = Field(default_factory=list)
id: str = "" id: str = ""
def _call( def _call(self, prompt: str, stop: Optional[List[str]] = None,
self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs) -> str:
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
msg = user_message(prompt) msg = user_message(prompt)
request = CompletionRequest(messages=self.prefix_messages+[msg]) request = CompletionRequest(messages=self.prefix_messages + [msg])
bot = ErnieBot(_get_model_service_url(self.model_name),self.access_token,request) bot = ErnieBot(_get_model_service_url(self.model_name), self.access_token, request)
try: try:
# 你的代码 # 你的代码
response = bot.get_response().result response = bot.get_response().result
...@@ -127,11 +121,11 @@ class ErnieChat(LLM): ...@@ -127,11 +121,11 @@ class ErnieChat(LLM):
except Exception as e: except Exception as e:
# 处理异常 # 处理异常
raise e raise e
def _get_id(self) -> str: def _get_id(self) -> str:
return self.id return self.id
@property @property
def _llm_type(self) -> str: def _llm_type(self) -> str:
"""Return type of llm.""" """Return type of llm."""
return "ernie" return "ernie"
\ No newline at end of file
from dataclasses import asdict, dataclass from dataclasses import asdict, dataclass
from typing import List from typing import List
...@@ -7,27 +5,32 @@ from pydantic import BaseModel, Field ...@@ -7,27 +5,32 @@ from pydantic import BaseModel, Field
from enum import Enum from enum import Enum
class MessageRole(str, Enum): class MessageRole(str, Enum):
USER = "user" USER = "user"
BOT = "assistant" BOT = "assistant"
@dataclass @dataclass
class Message: class Message:
role: str role: str
content: str content: str
@dataclass @dataclass
class CompletionRequest: class CompletionRequest:
messages: List[Message] messages: List[Message]
stream: bool = False stream: bool = False
user: str = "" user: str = ""
@dataclass @dataclass
class Usage: class Usage:
prompt_tokens: int prompt_tokens: int
completion_tokens: int completion_tokens: int
total_tokens: int total_tokens: int
@dataclass @dataclass
class CompletionResponse: class CompletionResponse:
id: str id: str
...@@ -42,12 +45,14 @@ class CompletionResponse: ...@@ -42,12 +45,14 @@ class CompletionResponse:
is_safe: bool = False is_safe: bool = False
is_truncated: bool = False is_truncated: bool = False
class ErrorResponse(BaseModel): class ErrorResponse(BaseModel):
error_code: int = Field(...) error_code: int = Field(...)
error_msg: str = Field(...) error_msg: str = Field(...)
id: str = Field(...) id: str = Field(...)
class ErnieBot():
class ErnieBot:
url: str url: str
access_token: str access_token: str
request: CompletionRequest request: CompletionRequest
...@@ -64,17 +69,19 @@ class ErnieBot(): ...@@ -64,17 +69,19 @@ class ErnieBot():
headers = {'Content-Type': 'application/json'} headers = {'Content-Type': 'application/json'}
params = {'access_token': self.access_token} params = {'access_token': self.access_token}
request_dict = asdict(self.request) request_dict = asdict(self.request)
response = requests.post(self.url, params=params,data=json.dumps(request_dict), headers=headers) response = requests.post(self.url, params=params, data=json.dumps(request_dict), headers=headers)
# print(response.json()) # print(response.json())
try: try:
return CompletionResponse(**response.json()) return CompletionResponse(**response.json())
except Exception as e: except Exception as e:
print(e) print(e)
raise Exception(response.json()) raise Exception(response.json())
def user_message(prompt: str) -> Message: def user_message(prompt: str) -> Message:
return Message(MessageRole.USER, prompt) return Message(MessageRole.USER, prompt)
def bot_message(prompt: str) -> Message: def bot_message(prompt: str) -> Message:
return Message(MessageRole.BOT, prompt) return Message(MessageRole.BOT, prompt)
\ No newline at end of file
import os import os
import requests import requests
from typing import Dict, Optional,List,Any,Mapping,Iterator from typing import Dict, Optional, List, Any, Mapping, Iterator
from pydantic import root_validator from pydantic import root_validator
from langchain.llms.base import BaseLLM,LLM from langchain.llms.base import BaseLLM, LLM
from langchain.cache import InMemoryCache from langchain.cache import InMemoryCache
from langchain.callbacks.manager import CallbackManagerForLLMRun, Callbacks, AsyncCallbackManagerForLLMRun from langchain.callbacks.manager import CallbackManagerForLLMRun, Callbacks, AsyncCallbackManagerForLLMRun
import qianfan import qianfan
from qianfan import ChatCompletion from qianfan import ChatCompletion
# 启动llm的缓存 # 启动llm的缓存
# langchain.llm_cache = InMemoryCache() # langchain.llm_cache = InMemoryCache()
class ChatERNIESerLLM(LLM): class ChatERNIESerLLM(LLM):
# 模型服务url # 模型服务url
chat_completion:ChatCompletion = None chat_completion: ChatCompletion = None
# url: str = "http://127.0.0.1:8000" # url: str = "http://127.0.0.1:8000"
chat_history: dict = [] chat_history: dict = []
out_stream: bool = False out_stream: bool = False
cache: bool = False cache: bool = False
model_name:str = "ERNIE-Bot" model_name: str = "ERNIE-Bot"
# def __init__(self): # def __init__(self):
# self.chat_completion = qianfan.ChatCompletion(ak="pT7sV1smp4AeDl0LjyZuHBV9", sk="b3N0ibo1IKTLZlSs7weZc8jdR0oHjyMu") # self.chat_completion = qianfan.ChatCompletion(ak="pT7sV1smp4AeDl0LjyZuHBV9", sk="b3N0ibo1IKTLZlSs7weZc8jdR0oHjyMu")
@property @property
def _llm_type(self) -> str: def _llm_type(self) -> str:
return self.model_name return self.model_name
def get_num_tokens(self, text: str) -> int: def get_num_tokens(self, text: str) -> int:
return len(text) return len(text)
def convert_data(self,data): @staticmethod
def convert_data(data):
result = [] result = []
for item in data: for item in data:
result.append({'q': item[0], 'a': item[1]}) result.append({'q': item[0], 'a': item[1]})
return result return result
def _call(self, prompt: str, def _call(self, prompt: str,
stop: Optional[List[str]] = None, stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
stream = False, stream=False,
**kwargs: Any) -> str: **kwargs: Any) -> str:
resp = self.chat_completion.do(model=self.model_name,messages=[{ resp = self.chat_completion.do(model=self.model_name, messages=[{
"role": "user", "role": "user",
"content": prompt "content": prompt
}]) }])
...@@ -54,26 +54,26 @@ class ChatERNIESerLLM(LLM): ...@@ -54,26 +54,26 @@ class ChatERNIESerLLM(LLM):
return resp.body["result"] return resp.body["result"]
async def _post_stream(self, async def _post_stream(self,
query: Dict, query: Dict,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
stream=False) -> Any: stream=False) -> Any:
"""POST请求 """POST请求
""" """
async for r in await self.chat_completion.ado(model=self.model_name,messages=[query], stream=stream): async for r in await self.chat_completion.ado(model=self.model_name, messages=[query], stream=stream):
assert r.code == 200 assert r.code == 200
if run_manager: if run_manager:
for callable in run_manager.get_sync().handlers: for _callable in run_manager.get_sync().handlers:
await callable.on_llm_new_token(r.body["result"]) await _callable.on_llm_new_token(r.body["result"])
async def _acall( async def _acall(
self, self,
prompt: str, prompt: str,
stop: Optional[List[str]] = None, stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any, **kwargs: Any,
) -> str: ) -> str:
await self._post_stream(query={ await self._post_stream(query={
"role": "user", "role": "user",
"content": prompt "content": prompt
},stream=True,run_manager=run_manager) }, stream=True, run_manager=run_manager)
return '' return ''
\ No newline at end of file
...@@ -4,6 +4,7 @@ import torch ...@@ -4,6 +4,7 @@ import torch
from transformers import AutoModel, AutoTokenizer, AutoConfig, DataCollatorForSeq2Seq from transformers import AutoModel, AutoTokenizer, AutoConfig, DataCollatorForSeq2Seq
from peft import PeftModel from peft import PeftModel
class ModelLoader: class ModelLoader:
def __init__(self, model_name_or_path, pre_seq_len=0, prefix_projection=False): def __init__(self, model_name_or_path, pre_seq_len=0, prefix_projection=False):
self.config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True) self.config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
...@@ -23,18 +24,19 @@ class ModelLoader: ...@@ -23,18 +24,19 @@ class ModelLoader:
def models(self): def models(self):
return self.model, self.tokenizer return self.model, self.tokenizer
def collator(self): def collator(self):
return DataCollatorForSeq2Seq(tokenizer=self.tokenizer, model=self.model) return DataCollatorForSeq2Seq(tokenizer=self.tokenizer, model=self.model)
def load_lora(self,ckpt_path,name="default"): def load_lora(self, ckpt_path, name="default"):
#训练时节约GPU占用 # 训练时节约GPU占用
peft_loaded = PeftModel.from_pretrained(self.base_model,ckpt_path,adapter_name=name) _peft_loaded = PeftModel.from_pretrained(self.base_model, ckpt_path, adapter_name=name)
self.model = peft_loaded.merge_and_unload() self.model = _peft_loaded.merge_and_unload()
print(f"Load LoRA model successfully!") print(f"Load LoRA model successfully!")
def load_loras(self,ckpt_paths,name="default"): def load_loras(self, ckpt_paths, name="default"):
if len(ckpt_paths)==0: global peft_loaded
if len(ckpt_paths) == 0:
return return
first = True first = True
for name, path in ckpt_paths.items(): for name, path in ckpt_paths.items():
...@@ -42,12 +44,12 @@ class ModelLoader: ...@@ -42,12 +44,12 @@ class ModelLoader:
if first: if first:
peft_loaded = PeftModel.from_pretrained(self.base_model, path, adapter_name=name) peft_loaded = PeftModel.from_pretrained(self.base_model, path, adapter_name=name)
first = False first = False
else: else:
peft_loaded.load_adapter(path,adapter_name=name) peft_loaded.load_adapter(path, adapter_name=name)
peft_loaded.set_adapter(name) peft_loaded.set_adapter(name)
self.model = peft_loaded self.model = peft_loaded
def load_prefix(self,ckpt_path): def load_prefix(self, ckpt_path):
prefix_state_dict = torch.load(os.path.join(ckpt_path, "pytorch_model.bin")) prefix_state_dict = torch.load(os.path.join(ckpt_path, "pytorch_model.bin"))
new_prefix_state_dict = {} new_prefix_state_dict = {}
for k, v in prefix_state_dict.items(): for k, v in prefix_state_dict.items():
...@@ -56,4 +58,3 @@ class ModelLoader: ...@@ -56,4 +58,3 @@ class ModelLoader:
self.model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict) self.model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
self.model.transformer.prefix_encoder.float() self.model.transformer.prefix_encoder.float()
print(f"Load prefix model successfully!") print(f"Load prefix model successfully!")
...@@ -2,7 +2,7 @@ import logging ...@@ -2,7 +2,7 @@ import logging
import os import os
from typing import Any, Dict, List, Mapping, Optional from typing import Any, Dict, List, Mapping, Optional
from langchain.llms.base import BaseLLM,LLM from langchain.llms.base import BaseLLM, LLM
from langchain.schema import LLMResult from langchain.schema import LLMResult
from langchain.utils import get_from_dict_or_env from langchain.utils import get_from_dict_or_env
from langchain.callbacks.manager import CallbackManagerForLLMRun, Callbacks from langchain.callbacks.manager import CallbackManagerForLLMRun, Callbacks
...@@ -16,18 +16,17 @@ from .xinghuo.ws import SparkAPI ...@@ -16,18 +16,17 @@ from .xinghuo.ws import SparkAPI
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
text = []
text =[]
# length = 0 # length = 0
def getText(role,content): def getText(role, content):
jsoncon = {} jsoncon = {"role": role, "content": content}
jsoncon["role"] = role
jsoncon["content"] = content
text.append(jsoncon) text.append(jsoncon)
return text return text
def getlength(text): def getlength(text):
length = 0 length = 0
for content in text: for content in text:
...@@ -36,11 +35,12 @@ def getlength(text): ...@@ -36,11 +35,12 @@ def getlength(text):
length += leng length += leng
return length return length
def checklen(text):
while (getlength(text) > 8000): def checklen(_text):
del text[0] while getlength(_text) > 8000:
return text del _text[0]
return _text
class SparkLLM(LLM): class SparkLLM(LLM):
""" """
...@@ -62,16 +62,16 @@ class SparkLLM(LLM): ...@@ -62,16 +62,16 @@ class SparkLLM(LLM):
None, None,
description="version", description="version",
) )
api: SparkAPI = Field( api: SparkAPI = Field(
None, None,
description="api", description="api",
) )
@root_validator() @root_validator()
def validate_environment(cls, values: Dict) -> Dict: def validate_environment(self, values: Dict) -> Dict:
"""Validate the environment.""" """Validate the environment."""
# print(values) # print(values)
appid = get_from_dict_or_env(values, "appid", "XH_APPID", "") appid = get_from_dict_or_env(values, "appid", "XH_APPID", "")
api_key = get_from_dict_or_env(values, "api_key", "XH_API_KEY", "") api_key = get_from_dict_or_env(values, "api_key", "XH_API_KEY", "")
api_secret = get_from_dict_or_env(values, "api_secret", "XH_API_SECRET", "") api_secret = get_from_dict_or_env(values, "api_secret", "XH_API_SECRET", "")
...@@ -84,23 +84,19 @@ class SparkLLM(LLM): ...@@ -84,23 +84,19 @@ class SparkLLM(LLM):
raise ValueError("No api_key provided.") raise ValueError("No api_key provided.")
if not api_secret: if not api_secret:
raise ValueError("No api_secret provided.") raise ValueError("No api_secret provided.")
values["appid"] = appid values["appid"] = appid
values["api_key"] = api_key values["api_key"] = api_key
values["api_secret"] = api_secret values["api_secret"] = api_secret
api=SparkAPI(appid,api_key,api_secret,version) api = SparkAPI(appid, api_key, api_secret, version)
values["api"]=api values["api"] = api
return values return values
def _call( def _call(self, prompt: str, stop: Optional[List[str]] = None,
self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs) -> str:
prompt: str, question = self.getText("user", prompt)
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
question = self.getText("user",prompt)
try: try:
# 你的代码 # 你的代码
# SparkApi.main(self.appid,self.api_key,self.api_secret,self.Spark_url,self.domain,question) # SparkApi.main(self.appid,self.api_key,self.api_secret,self.Spark_url,self.domain,question)
...@@ -109,20 +105,18 @@ class SparkLLM(LLM): ...@@ -109,20 +105,18 @@ class SparkLLM(LLM):
return response return response
except Exception as e: except Exception as e:
# 处理异常 # 处理异常
print("exception:",e) print("exception:", e)
raise e raise e
def getText(self,role,content): def getText(self, role, content):
text = [] text = []
jsoncon = {} jsoncon = {}
jsoncon["role"] = role jsoncon["role"] = role
jsoncon["content"] = content jsoncon["content"] = content
text.append(jsoncon) text.append(jsoncon)
return text return text
@property @property
def _llm_type(self) -> str: def _llm_type(self) -> str:
"""Return type of llm.""" """Return type of llm."""
return "xinghuo" return "xinghuo"
\ No newline at end of file
from langchain.llms.base import LLM from langchain.llms.base import LLM
from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.callbacks.manager import CallbackManagerForLLMRun
from pydantic import root_validator from pydantic import root_validator
from typing import Dict, List, Optional from typing import Dict, List, Optional
from transformers import PreTrainedModel, PreTrainedTokenizer from transformers import PreTrainedModel, PreTrainedTokenizer
class WrapperLLM(LLM): class WrapperLLM(LLM):
tokenizer: PreTrainedTokenizer = None tokenizer: PreTrainedTokenizer = None
model: PreTrainedModel = None model: PreTrainedModel = None
@root_validator() @root_validator()
def validate_environment(cls, values: Dict) -> Dict: def validate_environment(self, values: Dict) -> Dict:
"""Validate the environment.""" """Validate the environment."""
# print(values) # print(values)
if values.get("model") is None: if values.get("model") is None:
...@@ -19,16 +19,12 @@ class WrapperLLM(LLM): ...@@ -19,16 +19,12 @@ class WrapperLLM(LLM):
raise ValueError("No tokenizer provided.") raise ValueError("No tokenizer provided.")
return values return values
def _call( def _call(self, prompt: str, stop: Optional[List[str]] = None,
self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs) -> str:
prompt: str, resp, his = self.model.chat(self.tokenizer, prompt)
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
resp,his = self.model.chat(self.tokenizer,prompt)
return resp return resp
@property @property
def _llm_type(self) -> str: def _llm_type(self) -> str:
"""Return type of llm.""" """Return type of llm."""
return "wrapper" return "wrapper"
\ No newline at end of file
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
class BaseCallback(ABC): class BaseCallback(ABC):
@abstractmethod @abstractmethod
def filter(self,title:str,content:str) -> bool: #return True舍弃当前段落 def filter(self, title: str, content: str) -> bool: # return True舍弃当前段落
pass pass
\ No newline at end of file
...@@ -25,7 +25,7 @@ class ChineseTextSplitter(CharacterTextSplitter): ...@@ -25,7 +25,7 @@ class ChineseTextSplitter(CharacterTextSplitter):
sent_list.append(ele) sent_list.append(ele)
return sent_list return sent_list
def split_text(self, text: str) -> List[str]: ##此处需要进一步优化逻辑 def split_text(self, text: str) -> List[str]: ##此处需要进一步优化逻辑
if self.pdf: if self.pdf:
text = re.sub(r"\n{3,}", r"\n", text) text = re.sub(r"\n{3,}", r"\n", text)
text = re.sub('\s', " ", text) text = re.sub('\s', " ", text)
...@@ -56,6 +56,6 @@ class ChineseTextSplitter(CharacterTextSplitter): ...@@ -56,6 +56,6 @@ class ChineseTextSplitter(CharacterTextSplitter):
ele_id = ele1_ls.index(ele_ele1) ele_id = ele1_ls.index(ele_ele1)
ele1_ls = ele1_ls[:ele_id] + [i for i in ele2_ls if i] + ele1_ls[ele_id + 1:] ele1_ls = ele1_ls[:ele_id] + [i for i in ele2_ls if i] + ele1_ls[ele_id + 1:]
id = ls.index(ele) _id = ls.index(ele)
ls = ls[:id] + [i for i in ele1_ls if i] + ls[id + 1:] ls = ls[:_id] + [i for i in ele1_ls if i] + ls[_id + 1:]
return ls return ls
# 文本分句长度 # 文本分句长度
SENTENCE_SIZE = 100 SENTENCE_SIZE = 100
ZH_TITLE_ENHANCE = False ZH_TITLE_ENHANCE = False
\ No newline at end of file
...@@ -33,7 +33,7 @@ def is_possible_title( ...@@ -33,7 +33,7 @@ def is_possible_title(
title_max_word_length: int = 20, title_max_word_length: int = 20,
non_alpha_threshold: float = 0.5, non_alpha_threshold: float = 0.5,
) -> bool: ) -> bool:
"""Checks to see if the text passes all of the checks for a valid title. """Checks to see if the text passes all the checks for a valid title.
Parameters Parameters
---------- ----------
......
import psycopg2 import psycopg2
from psycopg2 import OperationalError, InterfaceError from psycopg2 import OperationalError, InterfaceError
class UPostgresDB: class UPostgresDB:
''' """
psycopg2.connect( psycopg2.connect(
dsn #指定连接参数。可以使用参数形式或 DSN 形式指定。 dsn #指定连接参数。可以使用参数形式或 DSN 形式指定。
host #指定连接数据库的主机名。 host #指定连接数据库的主机名。
...@@ -18,8 +19,9 @@ class UPostgresDB: ...@@ -18,8 +19,9 @@ class UPostgresDB:
sslkey #指定私钥文件名。 sslkey #指定私钥文件名。
sslcert #指定公钥文件名。 sslcert #指定公钥文件名。
) )
''' """
def __init__(self, host, database, user, password,port = 5432):
def __init__(self, host, database, user, password, port=5432):
self.host = host self.host = host
self.database = database self.database = database
self.user = user self.user = user
...@@ -35,7 +37,7 @@ class UPostgresDB: ...@@ -35,7 +37,7 @@ class UPostgresDB:
database=self.database, database=self.database,
user=self.user, user=self.user,
password=self.password, password=self.password,
port = self.port port=self.port
) )
self.cur = self.conn.cursor() self.cur = self.conn.cursor()
except Exception as e: except Exception as e:
...@@ -45,7 +47,7 @@ class UPostgresDB: ...@@ -45,7 +47,7 @@ class UPostgresDB:
try: try:
if self.conn is None or self.conn.closed: if self.conn is None or self.conn.closed:
self.connect() self.connect()
self.cur.execute(query) self.cur.execute(query)
self.conn.commit() self.conn.commit()
except InterfaceError as e: except InterfaceError as e:
print(f"数据库连接已经关闭: {e}") print(f"数据库连接已经关闭: {e}")
...@@ -53,8 +55,8 @@ class UPostgresDB: ...@@ -53,8 +55,8 @@ class UPostgresDB:
print(f"数据库连接出现问题: {e}") print(f"数据库连接出现问题: {e}")
self.connect() self.connect()
self.retry_execute(query) self.retry_execute(query)
except Exception as e: except Exception as e:
print(f"执行sql语句出现错误: {e}") print(f"执行sql语句出现错误: {e}")
self.conn.rollback() self.conn.rollback()
def retry_execute(self, query): def retry_execute(self, query):
...@@ -69,16 +71,16 @@ class UPostgresDB: ...@@ -69,16 +71,16 @@ class UPostgresDB:
try: try:
if self.conn is None or self.conn.closed: if self.conn is None or self.conn.closed:
self.connect() self.connect()
self.cur.execute(query, args) self.cur.execute(query, args)
self.conn.commit() self.conn.commit()
except InterfaceError as e: except InterfaceError as e:
print(f"数据库连接已经关闭: {e}") print(f"数据库连接已经关闭: {e}")
except OperationalError as e: except OperationalError as e:
print(f"数据库操作出现问题: {e}") print(f"数据库操作出现问题: {e}")
self.connect() self.connect()
self.retry_execute_args(query, args) self.retry_execute_args(query, args)
except Exception as e: except Exception as e:
print(f"执行sql语句出现错误: {e}") print(f"执行sql语句出现错误: {e}")
self.conn.rollback() self.conn.rollback()
def retry_execute_args(self, query, args): def retry_execute_args(self, query, args):
...@@ -89,7 +91,6 @@ class UPostgresDB: ...@@ -89,7 +91,6 @@ class UPostgresDB:
print(f"重新执行sql语句再次出现错误: {type(e).__name__}: {e}") print(f"重新执行sql语句再次出现错误: {type(e).__name__}: {e}")
self.conn.rollback() self.conn.rollback()
def search(self, query, params=None): def search(self, query, params=None):
if self.conn is None or self.conn.closed: if self.conn is None or self.conn.closed:
self.connect() self.connect()
...@@ -97,7 +98,7 @@ class UPostgresDB: ...@@ -97,7 +98,7 @@ class UPostgresDB:
def fetchall(self): def fetchall(self):
return self.cur.fetchall() return self.cur.fetchall()
def fetchone(self): def fetchone(self):
return self.cur.fetchone() return self.cur.fetchone()
...@@ -109,8 +110,8 @@ class UPostgresDB: ...@@ -109,8 +110,8 @@ class UPostgresDB:
try: try:
if self.conn is None or self.conn.closed: if self.conn is None or self.conn.closed:
self.connect() self.connect()
self.cur.execute(query) self.cur.execute(query)
self.conn.commit() self.conn.commit()
except Exception as e: except Exception as e:
print(f"An error occurred: {e}") print(f"An error occurred: {e}")
self.conn.rollback() self.conn.rollback()
from .c_db import UPostgresDB from .c_db import UPostgresDB
import json import json
TABLE_USER = """ TABLE_USER = """
DROP TABLE IF EXISTS "c_user"; DROP TABLE IF EXISTS "c_user";
CREATE TABLE c_user ( CREATE TABLE c_user (
...@@ -13,14 +14,15 @@ COMMENT ON COLUMN "c_user"."password" IS '用户密码'; ...@@ -13,14 +14,15 @@ COMMENT ON COLUMN "c_user"."password" IS '用户密码';
COMMENT ON TABLE "c_user" IS '用户表'; COMMENT ON TABLE "c_user" IS '用户表';
""" """
class CUser: class CUser:
def __init__(self, db: UPostgresDB) -> None: def __init__(self, db: UPostgresDB) -> None:
self.db = db self.db = db
def insert(self, value): def insert(self, value):
query = f"INSERT INTO c_user(user_id, account, password) VALUES (%s,%s,%s)" query = f"INSERT INTO c_user(user_id, account, password) VALUES (%s,%s,%s)"
self.db.execute_args(query, ((value[0],value[1],value[2]))) self.db.execute_args(query, (value[0], value[1], value[2]))
def create_table(self): def create_table(self):
query = TABLE_USER query = TABLE_USER
self.db.execute(query) self.db.execute(query)
\ No newline at end of file
from .c_db import UPostgresDB from .c_db import UPostgresDB
import json import json
TABLE_CHAT = """ TABLE_CHAT = """
DROP TABLE IF EXISTS "chat"; DROP TABLE IF EXISTS "chat";
CREATE TABLE chat ( CREATE TABLE chat (
...@@ -17,6 +18,7 @@ COMMENT ON COLUMN "chat"."deleted" IS '是否删除:0=否,1=是'; ...@@ -17,6 +18,7 @@ COMMENT ON COLUMN "chat"."deleted" IS '是否删除:0=否,1=是';
COMMENT ON TABLE "chat" IS '会话信息表'; COMMENT ON TABLE "chat" IS '会话信息表';
""" """
class Chat: class Chat:
def __init__(self, db: UPostgresDB) -> None: def __init__(self, db: UPostgresDB) -> None:
self.db = db self.db = db
...@@ -24,9 +26,9 @@ class Chat: ...@@ -24,9 +26,9 @@ class Chat:
# 插入数据 # 插入数据
def insert(self, value): def insert(self, value):
query = f"INSERT INTO chat(chat_id, user_id, info, deleted) VALUES (%s,%s,%s,%s)" query = f"INSERT INTO chat(chat_id, user_id, info, deleted) VALUES (%s,%s,%s,%s)"
self.db.execute_args(query, ((value[0],value[1],value[2],value[3]))) self.db.execute_args(query, (value[0], value[1], value[2], value[3]))
# 创建表 # 创建表
def create_table(self): def create_table(self):
query = TABLE_CHAT query = TABLE_CHAT
self.db.execute(query) self.db.execute(query)
\ No newline at end of file
from .c_db import UPostgresDB from .c_db import UPostgresDB
import json import json
TABLE_CHAT = """ TABLE_CHAT = """
DROP TABLE IF EXISTS "turn_qa"; DROP TABLE IF EXISTS "turn_qa";
CREATE TABLE turn_qa ( CREATE TABLE turn_qa (
...@@ -21,6 +22,7 @@ COMMENT ON COLUMN "turn_qa"."is_last" IS '是否为最后一轮对话:0=否, ...@@ -21,6 +22,7 @@ COMMENT ON COLUMN "turn_qa"."is_last" IS '是否为最后一轮对话:0=否,
COMMENT ON TABLE "turn_qa" IS '会话轮次信息表'; COMMENT ON TABLE "turn_qa" IS '会话轮次信息表';
""" """
class TurnQa: class TurnQa:
def __init__(self, db: UPostgresDB) -> None: def __init__(self, db: UPostgresDB) -> None:
self.db = db self.db = db
...@@ -28,9 +30,9 @@ class TurnQa: ...@@ -28,9 +30,9 @@ class TurnQa:
# 插入数据 # 插入数据
def insert(self, value): def insert(self, value):
query = f"INSERT INTO turn_qa(turn_id, chat_id, question, answer, turn_number, is_last) VALUES (%s,%s,%s,%s,%s,%s)" query = f"INSERT INTO turn_qa(turn_id, chat_id, question, answer, turn_number, is_last) VALUES (%s,%s,%s,%s,%s,%s)"
self.db.execute_args(query, ((value[0],value[1],value[2],value[3],value[4],value[5]))) self.db.execute_args(query, (value[0], value[1], value[2], value[3], value[4], value[5]))
# 创建表 # 创建表
def create_table(self): def create_table(self):
query = TABLE_CHAT query = TABLE_CHAT
self.db.execute(query) self.db.execute(query)
\ No newline at end of file
import os, sys import os, sys
from os import path from os import path
sys.path.append("../") sys.path.append("../")
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
import json import json
from typing import List,Any,Tuple,Dict from typing import List, Any, Tuple, Dict
from langchain.schema import Document from langchain.schema import Document
from src.pgdb.knowledge.pgsqldocstore import PgSqlDocstore,str2hash_base64 from src.pgdb.knowledge.pgsqldocstore import PgSqlDocstore, str2hash_base64
class DocumentCallback(ABC): class DocumentCallback(ABC):
@abstractmethod #向量库储存前文档处理-- @abstractmethod # 向量库储存前文档处理--
def before_store(self,docstore:PgSqlDocstore,documents): def before_store(self, docstore: PgSqlDocstore, documents):
pass pass
@abstractmethod #向量库查询后文档处理--用于结构建立
def after_search(self,docstore:PgSqlDocstore,documents:List[Tuple[Document, float]],number:int = 1000) -> List[Tuple[Document, float]]: #向量库查询后文档处理 @abstractmethod # 向量库查询后文档处理--用于结构建立
def after_search(self, docstore: PgSqlDocstore, documents: List[Tuple[Document, float]], number: int = 1000) -> \
List[Tuple[Document, float]]: # 向量库查询后文档处理
pass pass
class DefaultDocumentCallback(DocumentCallback): class DefaultDocumentCallback(DocumentCallback):
def before_store(self,docstore:PgSqlDocstore,documents): def before_store(self, docstore: PgSqlDocstore, documents):
output_doc = [] output_doc = []
for doc in documents: for doc in documents:
if "next_doc" in doc.metadata: if "next_doc" in doc.metadata:
...@@ -27,22 +29,24 @@ class DefaultDocumentCallback(DocumentCallback): ...@@ -27,22 +29,24 @@ class DefaultDocumentCallback(DocumentCallback):
doc.metadata.pop("next_doc") doc.metadata.pop("next_doc")
output_doc.append(doc) output_doc.append(doc)
return output_doc return output_doc
def after_search(self,docstore:PgSqlDocstore,documents:List[Tuple[Document, float]],number:int = 1000) -> List[Tuple[Document, float]]: #向量库查询后文档处理
output_doc:List[Tuple[Document, float]] = [] def after_search(self, docstore: PgSqlDocstore, documents: List[Tuple[Document, float]], number: int = 1000) -> \
List[Tuple[Document, float]]: # 向量库查询后文档处理
output_doc: List[Tuple[Document, float]] = []
exist_hash = [] exist_hash = []
for doc,score in documents: for doc, score in documents:
print(exist_hash) print(exist_hash)
dochash = str2hash_base64(doc.page_content) dochash = str2hash_base64(doc.page_content)
if dochash in exist_hash: if dochash in exist_hash:
continue continue
else: else:
exist_hash.append(dochash) exist_hash.append(dochash)
output_doc.append((doc,score)) output_doc.append((doc, score))
if len(output_doc) > number: if len(output_doc) > number:
return output_doc return output_doc
fordoc = doc fordoc = doc
while ("next_hash" in fordoc.metadata): while "next_hash" in fordoc.metadata:
if len(fordoc.metadata["next_hash"])>0: if len(fordoc.metadata["next_hash"]) > 0:
if fordoc.metadata["next_hash"] in exist_hash: if fordoc.metadata["next_hash"] in exist_hash:
break break
else: else:
...@@ -50,11 +54,11 @@ class DefaultDocumentCallback(DocumentCallback): ...@@ -50,11 +54,11 @@ class DefaultDocumentCallback(DocumentCallback):
content = docstore.TXT_DOC.search(fordoc.metadata["next_hash"]) content = docstore.TXT_DOC.search(fordoc.metadata["next_hash"])
if content: if content:
fordoc = Document(page_content=content[0], metadata=json.loads(content[1])) fordoc = Document(page_content=content[0], metadata=json.loads(content[1]))
output_doc.append((fordoc,score)) output_doc.append((fordoc, score))
if len(output_doc) > number: if len(output_doc) > number:
return output_doc return output_doc
else: else:
break break
else: else:
break break
return output_doc return output_doc
\ No newline at end of file
import psycopg2 import psycopg2
class PostgresDB: class PostgresDB:
''' """
psycopg2.connect( psycopg2.connect(
dsn #指定连接参数。可以使用参数形式或 DSN 形式指定。 dsn #指定连接参数。可以使用参数形式或 DSN 形式指定。
host #指定连接数据库的主机名。 host #指定连接数据库的主机名。
...@@ -17,8 +18,9 @@ class PostgresDB: ...@@ -17,8 +18,9 @@ class PostgresDB:
sslkey #指定私钥文件名。 sslkey #指定私钥文件名。
sslcert #指定公钥文件名。 sslcert #指定公钥文件名。
) )
''' """
def __init__(self, host, database, user, password,port = 5432):
def __init__(self, host, database, user, password, port=5432):
self.host = host self.host = host
self.database = database self.database = database
self.user = user self.user = user
...@@ -28,28 +30,29 @@ class PostgresDB: ...@@ -28,28 +30,29 @@ class PostgresDB:
self.cur = None self.cur = None
def connect(self): def connect(self):
self.conn = psycopg2.connect( self.conn = psycopg2.connect(
host=self.host, host=self.host,
database=self.database, database=self.database,
user=self.user, user=self.user,
password=self.password, password=self.password,
port = self.port port=self.port
) )
self.cur = self.conn.cursor() self.cur = self.conn.cursor()
def execute(self, query): def execute(self, query):
try: try:
self.cur.execute(query) self.cur.execute(query)
self.conn.commit() self.conn.commit()
except Exception as e: except Exception as e:
print(f"An error occurred: {e}") print(f"An error occurred: {e}")
self.conn.rollback() self.conn.rollback()
def execute_args(self, query, args): def execute_args(self, query, args):
try: try:
self.cur.execute(query, args) self.cur.execute(query, args)
self.conn.commit() self.conn.commit()
except Exception as e: except Exception as e:
print(f"An error occurred: {e}") print(f"An error occurred: {e}")
self.conn.rollback() self.conn.rollback()
def search(self, query, params=None): def search(self, query, params=None):
...@@ -64,8 +67,8 @@ class PostgresDB: ...@@ -64,8 +67,8 @@ class PostgresDB:
def format(self, query): def format(self, query):
try: try:
self.cur.execute(query) self.cur.execute(query)
self.conn.commit() self.conn.commit()
except Exception as e: except Exception as e:
print(f"An error occurred: {e}") print(f"An error occurred: {e}")
self.conn.rollback() self.conn.rollback()
import sys import sys
from os import path from os import path
# 这里相当于把当前目录添加到pythonpath中 # 这里相当于把当前目录添加到pythonpath中
sys.path.append(path.dirname(path.abspath(__file__))) sys.path.append(path.dirname(path.abspath(__file__)))
from typing import List,Union,Dict,Optional from typing import List, Union, Dict, Optional
from langchain.docstore.base import AddableMixin, Docstore from langchain.docstore.base import AddableMixin, Docstore
from k_db import PostgresDB from k_db import PostgresDB
from .txt_doc_table import TxtDoc from .txt_doc_table import TxtDoc
from .vec_txt_table import TxtVector from .vec_txt_table import TxtVector
import json,hashlib,base64 import json, hashlib, base64
from langchain.schema import Document from langchain.schema import Document
def str2hash_base64(inp: str) -> str:
def str2hash_base64(input:str) -> str:
# return f"%s" % hash(input) # return f"%s" % hash(input)
return base64.b64encode(hashlib.sha1(input.encode()).digest()).decode() return base64.b64encode(hashlib.sha1(inp.encode()).digest()).decode()
class PgSqlDocstore(Docstore,AddableMixin): class PgSqlDocstore(Docstore, AddableMixin):
host:str host: str
dbname:str dbname: str
username:str username: str
password:str password: str
port:str port: str
''' '''
说明,重写__getstate__,__setstate__,适用于langchain的序列化存储,基于pickle进行存储。返回数组包含pgsql连接信息。 说明,重写__getstate__,__setstate__,适用于langchain的序列化存储,基于pickle进行存储。返回数组包含pgsql连接信息。
''' '''
def __getstate__(self): def __getstate__(self):
return {"host":self.host,"dbname":self.dbname,"username":self.username,"password":self.password,"port":self.port} return {"host": self.host, "dbname": self.dbname, "username": self.username, "password": self.password,
"port": self.port}
def __setstate__(self, info): def __setstate__(self, info):
self.__init__(info) self.__init__(info)
def __init__(self,info:dict,reset:bool = False): def __init__(self, info: dict, reset: bool = False):
self.host = info["host"] self.host = info["host"]
self.dbname = info["dbname"] self.dbname = info["dbname"]
self.username = info["username"] self.username = info["username"]
self.password = info["password"] self.password = info["password"]
self.port = info["port"] if "port" in info else "5432"; self.port = info["port"] if "port" in info else "5432"
self.pgdb = PostgresDB(self.host, self.dbname, self.username, self.password,port=self.port) self.pgdb = PostgresDB(self.host, self.dbname, self.username, self.password, port=self.port)
self.TXT_DOC = TxtDoc(self.pgdb) self.TXT_DOC = TxtDoc(self.pgdb)
self.VEC_TXT = TxtVector(self.pgdb) self.VEC_TXT = TxtVector(self.pgdb)
if reset: if reset:
...@@ -48,12 +50,15 @@ class PgSqlDocstore(Docstore,AddableMixin): ...@@ -48,12 +50,15 @@ class PgSqlDocstore(Docstore,AddableMixin):
self.VEC_TXT.drop_table() self.VEC_TXT.drop_table()
self.TXT_DOC.create_table() self.TXT_DOC.create_table()
self.VEC_TXT.create_table() self.VEC_TXT.create_table()
def __sub_init__(self): def __sub_init__(self):
if not self.pgdb.conn: if not self.pgdb.conn:
self.pgdb.connect() self.pgdb.connect()
''' '''
从本地库中查找向量对应的文本段落,封装成Document返回 从本地库中查找向量对应的文本段落,封装成Document返回
''' '''
def search(self, search: str) -> Union[str, Document]: def search(self, search: str) -> Union[str, Document]:
if not self.pgdb.conn: if not self.pgdb.conn:
self.__sub_init__() self.__sub_init__()
...@@ -63,40 +68,44 @@ class PgSqlDocstore(Docstore,AddableMixin): ...@@ -63,40 +68,44 @@ class PgSqlDocstore(Docstore,AddableMixin):
return Document(page_content=content[0], metadata=json.loads(content[1])) return Document(page_content=content[0], metadata=json.loads(content[1]))
else: else:
return Document() return Document()
''' '''
从本地库中删除向量对应的文本,批量删除 从本地库中删除向量对应的文本,批量删除
''' '''
def delete(self, ids: List) -> None: def delete(self, ids: List) -> None:
if not self.pgdb.conn: if not self.pgdb.conn:
self.__sub_init__() self.__sub_init__()
pids = [] pids = []
for id in ids: for item in ids:
anwser = self.VEC_TXT.search(id) anwser = self.VEC_TXT.search(item)
pids.append(anwser[0]) pids.append(anwser[0])
self.VEC_TXT.delete(ids) self.VEC_TXT.delete(ids)
self.TXT_DOC.delete(pids) self.TXT_DOC.delete(pids)
''' '''
向本地库添加向量和文本信息 向本地库添加向量和文本信息
[vector_id,Document(page_content=问题, metadata=dict(paragraph=段落文本))] [vector_id,Document(page_content=问题, metadata=dict(paragraph=段落文本))]
''' '''
def add(self, texts: Dict[str, Document]) -> None: def add(self, texts: Dict[str, Document]) -> None:
# for vec,doc in texts.items(): # for vec,doc in texts.items():
# paragraph_id = self.TXT_DOC.insert(doc.metadata["paragraph"]) # paragraph_id = self.TXT_DOC.insert(doc.metadata["paragraph"])
# self.VEC_TXT.insert(vector_id=vec,paragraph_id=paragraph_id,text=doc.page_content) # self.VEC_TXT.insert(vector_id=vec,paragraph_id=paragraph_id,text=doc.page_content)
if not self.pgdb.conn: if not self.pgdb.conn:
self.__sub_init__() self.__sub_init__()
paragraph_hashs = [] #hash,text paragraph_hashs = [] # hash,text
paragraph_txts = [] paragraph_txts = []
vec_inserts = [] vec_inserts = []
for vec,doc in texts.items(): for vec, doc in texts.items():
txt_hash = str2hash_base64(doc.metadata["paragraph"]) txt_hash = str2hash_base64(doc.metadata["paragraph"])
print(txt_hash) print(txt_hash)
vec_inserts.append((vec,doc.page_content,txt_hash)) vec_inserts.append((vec, doc.page_content, txt_hash))
if txt_hash not in paragraph_hashs: if txt_hash not in paragraph_hashs:
paragraph_hashs.append(txt_hash) paragraph_hashs.append(txt_hash)
paragraph = doc.metadata["paragraph"] paragraph = doc.metadata["paragraph"]
doc.metadata.pop("paragraph") doc.metadata.pop("paragraph")
paragraph_txts.append((txt_hash,paragraph,json.dumps(doc.metadata,ensure_ascii=False))) paragraph_txts.append((txt_hash, paragraph, json.dumps(doc.metadata, ensure_ascii=False)))
# print(paragraph_txts) # print(paragraph_txts)
self.TXT_DOC.insert(paragraph_txts) self.TXT_DOC.insert(paragraph_txts)
self.VEC_TXT.insert(vec_inserts) self.VEC_TXT.insert(vec_inserts)
...@@ -105,7 +114,7 @@ class PgSqlDocstore(Docstore,AddableMixin): ...@@ -105,7 +114,7 @@ class PgSqlDocstore(Docstore,AddableMixin):
class InMemorySecondaryDocstore(Docstore, AddableMixin): class InMemorySecondaryDocstore(Docstore, AddableMixin):
"""Simple in memory docstore in the form of a dict.""" """Simple in memory docstore in the form of a dict."""
def __init__(self, _dict: Optional[Dict[str, Document]] = None,_sec_dict: Optional[Dict[str, Document]] = None): def __init__(self, _dict: Optional[Dict[str, Document]] = None, _sec_dict: Optional[Dict[str, Document]] = None):
"""Initialize with dict.""" """Initialize with dict."""
self._dict = _dict if _dict is not None else {} self._dict = _dict if _dict is not None else {}
self._sec_dict = _sec_dict if _sec_dict is not None else {} self._sec_dict = _sec_dict if _sec_dict is not None else {}
...@@ -123,19 +132,19 @@ class InMemorySecondaryDocstore(Docstore, AddableMixin): ...@@ -123,19 +132,19 @@ class InMemorySecondaryDocstore(Docstore, AddableMixin):
if overlapping: if overlapping:
raise ValueError(f"Tried to add ids that already exist: {overlapping}") raise ValueError(f"Tried to add ids that already exist: {overlapping}")
self._dict = {**self._dict, **texts} self._dict = {**self._dict, **texts}
dict1 = {} dict1 = {}
dict_sec = {} dict_sec = {}
for vec,doc in texts.items(): for vec, doc in texts.items():
txt_hash = str2hash_base64(doc.metadata["paragraph"]) txt_hash = str2hash_base64(doc.metadata["paragraph"])
metadata=doc.metadata metadata = doc.metadata
paragraph = metadata.pop('paragraph') paragraph = metadata.pop('paragraph')
# metadata.update({"paragraph_id":txt_hash}) # metadata.update({"paragraph_id":txt_hash})
metadata['paragraph_id']=txt_hash metadata['paragraph_id'] = txt_hash
dict_sec[txt_hash] = Document(page_content=paragraph,metadata=metadata) dict_sec[txt_hash] = Document(page_content=paragraph, metadata=metadata)
dict1[vec] = Document(page_content=doc.page_content,metadata={'paragraph_id':txt_hash}) dict1[vec] = Document(page_content=doc.page_content, metadata={'paragraph_id': txt_hash})
self._dict = {**self._dict, **dict1} self._dict = {**self._dict, **dict1}
self._sec_dict = {**self._sec_dict, **dict_sec} self._sec_dict = {**self._sec_dict, **dict_sec}
def delete(self, ids: List) -> None: def delete(self, ids: List) -> None:
"""Deleting IDs from in memory dictionary.""" """Deleting IDs from in memory dictionary."""
...@@ -143,7 +152,7 @@ class InMemorySecondaryDocstore(Docstore, AddableMixin): ...@@ -143,7 +152,7 @@ class InMemorySecondaryDocstore(Docstore, AddableMixin):
if not overlapping: if not overlapping:
raise ValueError(f"Tried to delete ids that does not exist: {ids}") raise ValueError(f"Tried to delete ids that does not exist: {ids}")
for _id in ids: for _id in ids:
self._sec_dict.pop(self._dict[id].metadata['paragraph_id']) self._sec_dict.pop(self._dict[_id].metadata['paragraph_id'])
self._dict.pop(_id) self._dict.pop(_id)
def search(self, search: str) -> Union[str, Document]: def search(self, search: str) -> Union[str, Document]:
...@@ -159,4 +168,4 @@ class InMemorySecondaryDocstore(Docstore, AddableMixin): ...@@ -159,4 +168,4 @@ class InMemorySecondaryDocstore(Docstore, AddableMixin):
return f"ID {search} not found." return f"ID {search} not found."
else: else:
print(self._dict[search].page_content) print(self._dict[search].page_content)
return self._sec_dict[self._dict[search].metadata['paragraph_id']] return self._sec_dict[self._dict[search].metadata['paragraph_id']]
\ No newline at end of file
from .k_db import PostgresDB from .k_db import PostgresDB
# paragraph_id BIGSERIAL primary key,
# paragraph_id BIGSERIAL primary key,
TABLE_TXT_DOC = """ TABLE_TXT_DOC = """
create table txt_doc ( create table txt_doc (
hash varchar(40) primary key, hash varchar(40) primary key,
...@@ -11,6 +12,8 @@ TABLE_TXT_DOC_HASH_INDEX = """ ...@@ -11,6 +12,8 @@ TABLE_TXT_DOC_HASH_INDEX = """
CREATE UNIQUE INDEX hash_index ON txt_doc (hash); CREATE UNIQUE INDEX hash_index ON txt_doc (hash);
""" """
# CREATE UNIQUE INDEX idx_name ON your_table (column_name); # CREATE UNIQUE INDEX idx_name ON your_table (column_name);
class TxtDoc: class TxtDoc:
def __init__(self, db: PostgresDB) -> None: def __init__(self, db: PostgresDB) -> None:
...@@ -21,19 +24,20 @@ class TxtDoc: ...@@ -21,19 +24,20 @@ class TxtDoc:
args = [] args = []
for value in texts: for value in texts:
value = list(value) value = list(value)
query+= "(%s,%s,%s)," query += "(%s,%s,%s),"
args.extend(value) args.extend(value)
query = query[:len(query)-1] query = query[:len(query) - 1]
query += f"ON conflict(hash) DO UPDATE SET text = EXCLUDED.text;" query += f"ON conflict(hash) DO UPDATE SET text = EXCLUDED.text;"
self.db.execute_args(query,args) self.db.execute_args(query, args)
def delete(self,ids): def delete(self, ids):
for id in ids: for item in ids:
query = f"delete FROM txt_doc WHERE hash = %s" % (id) query = f"delete FROM txt_doc WHERE hash = %s" % item
self.db.execute(query) self.db.execute(query)
def search(self, id):
def search(self, item):
query = "SELECT text,matadate FROM txt_doc WHERE hash = %s" query = "SELECT text,matadate FROM txt_doc WHERE hash = %s"
self.db.execute_args(query,[id]) self.db.execute_args(query, [item])
answer = self.db.fetchall() answer = self.db.fetchall()
if len(answer) > 0: if len(answer) > 0:
return answer[0] return answer[0]
...@@ -60,4 +64,3 @@ class TxtDoc: ...@@ -60,4 +64,3 @@ class TxtDoc:
query = "DROP TABLE txt_doc" query = "DROP TABLE txt_doc"
self.db.format(query) self.db.format(query)
print("drop table txt_doc ok") print("drop table txt_doc ok")
from .k_db import PostgresDB from .k_db import PostgresDB
TABLE_VEC_TXT = """ TABLE_VEC_TXT = """
CREATE TABLE vec_txt ( CREATE TABLE vec_txt (
vector_id varchar(36) PRIMARY KEY, vector_id varchar(36) PRIMARY KEY,
...@@ -6,7 +7,9 @@ CREATE TABLE vec_txt ( ...@@ -6,7 +7,9 @@ CREATE TABLE vec_txt (
paragraph_id varchar(40) not null paragraph_id varchar(40) not null
) )
""" """
#025a9bee-2eb2-47f5-9722-525e05a0442b
# 025a9bee-2eb2-47f5-9722-525e05a0442b
class TxtVector: class TxtVector:
def __init__(self, db: PostgresDB) -> None: def __init__(self, db: PostgresDB) -> None:
self.db = db self.db = db
...@@ -16,19 +19,21 @@ class TxtVector: ...@@ -16,19 +19,21 @@ class TxtVector:
args = [] args = []
for value in vectors: for value in vectors:
value = list(value) value = list(value)
query+= "(%s,%s,%s)," query += "(%s,%s,%s),"
args.extend(value) args.extend(value)
query = query[:len(query)-1] query = query[:len(query) - 1]
query += f"ON conflict(vector_id) DO UPDATE SET text = EXCLUDED.text,paragraph_id = EXCLUDED.paragraph_id;" query += f"ON conflict(vector_id) DO UPDATE SET text = EXCLUDED.text,paragraph_id = EXCLUDED.paragraph_id;"
# query += ";" # query += ";"
self.db.execute_args(query,args) self.db.execute_args(query, args)
def delete(self,ids):
for id in ids: def delete(self, ids):
query = f"delete FROM vec_txt WHERE vector_id = '%s'" % (id,) for item in ids:
query = f"delete FROM vec_txt WHERE vector_id = '%s'" % (item,)
self.db.execute(query) self.db.execute(query)
def search(self, search: str): def search(self, search: str):
query = f"SELECT paragraph_id,text FROM vec_txt WHERE vector_id = %s" query = f"SELECT paragraph_id,text FROM vec_txt WHERE vector_id = %s"
self.db.execute_args(query,[search]) self.db.execute_args(query, [search])
answer = self.db.fetchall() answer = self.db.fetchall()
print(answer) print(answer)
return answer[0] return answer[0]
...@@ -48,4 +53,4 @@ class TxtVector: ...@@ -48,4 +53,4 @@ class TxtVector:
if exists: if exists:
query = "DROP TABLE vec_txt" query = "DROP TABLE vec_txt"
self.db.format(query) self.db.format(query)
print("drop table vec_txt ok") print("drop table vec_txt ok")
\ No newline at end of file
import sys import sys
sys.path.append("../") sys.path.append("../")
from src.pgdb.chat.c_db import UPostgresDB from src.pgdb.chat.c_db import UPostgresDB
from src.pgdb.chat.chat_table import Chat from src.pgdb.chat.chat_table import Chat
from src.pgdb.chat.c_user_table import CUser from src.pgdb.chat.c_user_table import CUser
from src.pgdb.chat.turn_qa_table import TurnQa from src.pgdb.chat.turn_qa_table import TurnQa
"""测试会话相关数据可的连接""" """测试会话相关数据可的连接"""
c_db = UPostgresDB(host="localhost", database="laechat", user="postgres", password="chenzl", port=5432)
chat = Chat(db=c_db)
c_user = CUser(db=c_db)
turn_qa = TurnQa(db=c_db)
chat.create_table()
c_user.create_table()
turn_qa.create_table()
# chat_id, user_id, info, deleted def test():
chat.insert(["3333", "1111", "没有info", 0]) c_db = UPostgresDB(host="localhost", database="laechat", user="postgres", password="chenzl", port=5432)
chat = Chat(db=c_db)
c_user = CUser(db=c_db)
turn_qa = TurnQa(db=c_db)
chat.create_table()
c_user.create_table()
turn_qa.create_table()
# chat_id, user_id, info, deleted
chat.insert(["3333", "1111", "没有info", 0])
# user_id, account, password
c_user.insert(["111", "zhangsan", "111111"])
# turn_id, chat_id, question, answer, turn_number, is_last
turn_qa.insert(["222", "1111", "nihao", "nihao", 1, 0])
# user_id, account, password
c_user.insert(["111", "zhangsan", "111111"])
# turn_id, chat_id, question, answer, turn_number, is_last if __name__ == "main":
turn_qa.insert(["222", "1111", "nihao", "nihao", 1, 0]) test()
\ No newline at end of file
import sys import sys
sys.path.append("../")
import time sys.path.append("../")
from src.loader.load import loads_path,loads from src.loader.load import loads_path
from src.pgdb.knowledge.similarity import VectorStore_FAISS from src.pgdb.knowledge.similarity import VectorStore_FAISS
from src.config.consts import ( from src.config.consts import (
VEC_DB_DBNAME, VEC_DB_DBNAME,
...@@ -18,24 +18,27 @@ from src.config.consts import ( ...@@ -18,24 +18,27 @@ from src.config.consts import (
from src.loader.callback import BaseCallback from src.loader.callback import BaseCallback
# 当返回值中带有“思考题”字样的时候,默认将其忽略。 # 当返回值中带有“思考题”字样的时候,默认将其忽略。
class localCallback(BaseCallback): class localCallback(BaseCallback):
def filter(self,title:str,content:str) -> bool: def filter(self, title: str, content: str) -> bool:
if len(title+content) == 0: if len(title + content) == 0:
return True return True
return (len(title+content) / (len(title.splitlines())+len(content.splitlines())) < 20) or "思考题" in title return (len(title + content) / (len(title.splitlines()) + len(content.splitlines())) < 20) or "思考题" in title
"""测试资料入库(pgsql和faiss)""" """测试资料入库(pgsql和faiss)"""
def test_faiss_from_dir(): def test_faiss_from_dir():
vecstore_faiss = VectorStore_FAISS( vecstore_faiss = VectorStore_FAISS(
embedding_model_name=EMBEEDING_MODEL_PATH, embedding_model_name=EMBEEDING_MODEL_PATH,
store_path=FAISS_STORE_PATH, store_path=FAISS_STORE_PATH,
index_name=INDEX_NAME, index_name=INDEX_NAME,
info={"port":VEC_DB_PORT,"host":VEC_DB_HOST,"dbname":VEC_DB_DBNAME,"username":VEC_DB_USER,"password":VEC_DB_PASSWORD}, info={"port": VEC_DB_PORT, "host": VEC_DB_HOST, "dbname": VEC_DB_DBNAME, "username": VEC_DB_USER,
show_number=SIMILARITY_SHOW_NUMBER, "password": VEC_DB_PASSWORD},
reset=True) show_number=SIMILARITY_SHOW_NUMBER,
docs = loads_path(KNOWLEDGE_PATH,mode="paged",sentence_size=512,callbacks=[localCallback()]) reset=True)
docs = loads_path(KNOWLEDGE_PATH, mode="paged", sentence_size=512, callbacks=[localCallback()])
print(len(docs)) print(len(docs))
last_doc = None last_doc = None
docs1 = [] docs1 = []
...@@ -45,7 +48,8 @@ def test_faiss_from_dir(): ...@@ -45,7 +48,8 @@ def test_faiss_from_dir():
continue continue
if "font-size" not in doc.metadata or "page_number" not in doc.metadata: if "font-size" not in doc.metadata or "page_number" not in doc.metadata:
continue continue
if doc.metadata["font-size"] == last_doc.metadata["font-size"] and doc.metadata["page_number"] == last_doc.metadata["page_number"] and len(doc.page_content)+len(last_doc.page_content) < 512/4*3: if doc.metadata["font-size"] == last_doc.metadata["font-size"] and doc.metadata["page_number"] == \
last_doc.metadata["page_number"] and len(doc.page_content) + len(last_doc.page_content) < 512 / 4 * 3:
last_doc.page_content += doc.page_content last_doc.page_content += doc.page_content
else: else:
docs1.append(last_doc) docs1.append(last_doc)
...@@ -56,22 +60,26 @@ def test_faiss_from_dir(): ...@@ -56,22 +60,26 @@ def test_faiss_from_dir():
print(len(docs)) print(len(docs))
print(vecstore_faiss._faiss.index.ntotal) print(vecstore_faiss._faiss.index.ntotal)
for i in range(0, len(docs), 300): for i in range(0, len(docs), 300):
vecstore_faiss._add_documents(docs[i:i+300 if i+300<len(docs) else len(docs)],need_split=True) vecstore_faiss._add_documents(docs[i:i + 300 if i + 300 < len(docs) else len(docs)], need_split=True)
print(vecstore_faiss._faiss.index.ntotal) print(vecstore_faiss._faiss.index.ntotal)
vecstore_faiss._save_local() vecstore_faiss._save_local()
"""测试faiss向量数据库查询结果""" """测试faiss向量数据库查询结果"""
def test_faiss_load(): def test_faiss_load():
vecstore_faiss = VectorStore_FAISS( vecstore_faiss = VectorStore_FAISS(
embedding_model_name=EMBEEDING_MODEL_PATH, embedding_model_name=EMBEEDING_MODEL_PATH,
store_path=FAISS_STORE_PATH, store_path=FAISS_STORE_PATH,
index_name=INDEX_NAME, index_name=INDEX_NAME,
info={"port":VEC_DB_PORT,"host":VEC_DB_HOST,"dbname":VEC_DB_DBNAME,"username":VEC_DB_USER,"password":VEC_DB_PASSWORD}, info={"port": VEC_DB_PORT, "host": VEC_DB_HOST, "dbname": VEC_DB_DBNAME, "username": VEC_DB_USER,
show_number=SIMILARITY_SHOW_NUMBER, "password": VEC_DB_PASSWORD},
reset=False) show_number=SIMILARITY_SHOW_NUMBER,
reset=False)
print(vecstore_faiss._join_document(vecstore_faiss.get_text_similarity("征信业务有什么情况"))) print(vecstore_faiss._join_document(vecstore_faiss.get_text_similarity("征信业务有什么情况")))
if __name__ == "__main__": if __name__ == "__main__":
# test_faiss_from_dir() # test_faiss_from_dir()
test_faiss_load() test_faiss_load()
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment