similarity.py 14.5 KB
Newer Older
陈正乐 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
import os, sys
import re,time
from os import path

sys.path.append("../") 
import copy
from typing import List,OrderedDict,Any,Optional,Tuple,Dict
from vector.pgsqldocstore import InMemorySecondaryDocstore
from langchain.vectorstores.faiss import FAISS,dependable_faiss_import
from langchain.schema import Document
from vector.pgsqldocstore import PgSqlDocstore   
from langchain.embeddings.huggingface import (
    HuggingFaceEmbeddings,
)
import math
import faiss
from langchain.vectorstores.utils import DistanceStrategy
from langchain.vectorstores.base import VectorStoreRetriever
from langchain.callbacks.manager import (
    AsyncCallbackManagerForRetrieverRun,
    CallbackManagerForRetrieverRun,
)
from loader import load
from langchain.embeddings.base import Embeddings
from vector.VectorCallback import DocumentCallback,DefaultDocumentCallback

def singleton(cls):
    instances = {}
    def get_instance(*args, **kwargs):
        if cls not in instances:
            instances[cls] = cls(*args, **kwargs)
        return instances[cls]
    return get_instance

@singleton
class EmbeddingFactory:
    def __init__(self, path:str):
        self.path = path
        self.embedding = HuggingFaceEmbeddings(model_name=path)

    def get_embedding(self):
        return self.embedding

def GetEmbding(path:str) -> Embeddings:
    # return HuggingFaceEmbeddings(model_name=path)
    return EmbeddingFactory(path).get_embedding()
    
import operator
from langchain.vectorstores.utils import DistanceStrategy
import numpy as np
class RE_FAISS(FAISS):
    #去重,并保留metadate
    def _tuple_deduplication(self, tuple_input:List[Tuple[Document, float]]) -> List[Tuple[Document, float]]:
        deduplicated_dict = OrderedDict()
        for doc,scores in tuple_input:
            page_content = doc.page_content
            metadata = doc.metadata
            if page_content not in deduplicated_dict:
                deduplicated_dict[page_content] = (metadata,scores)
        deduplicated_documents = [(Document(page_content=key,metadata=value[0]),value[1]) for key, value in deduplicated_dict.items()]
        return deduplicated_documents
    def similarity_search_with_score_by_vector(
        self,
        embedding: List[float],
        k: int = 4,
        filter: Optional[Dict[str, Any]] = None,
        fetch_k: int = 20,
        **kwargs: Any,
    ) -> List[Tuple[Document, float]]:
        faiss = dependable_faiss_import()
        vector = np.array([embedding], dtype=np.float32)
        if self._normalize_L2:
            faiss.normalize_L2(vector)
        scores, indices = self.index.search(vector, k if filter is None else fetch_k)
        docs = []
        for j, i in enumerate(indices[0]):
            if i == -1:
                # This happens when not enough docs are returned.
                continue
            _id = self.index_to_docstore_id[i]
            doc = self.docstore.search(_id)
            if not isinstance(doc, Document):
                raise ValueError(f"Could not find document for id {_id}, got {doc}")
            if filter is not None:
                filter = {
                    key: [value] if not isinstance(value, list) else value
                    for key, value in filter.items()
                }
                if all(doc.metadata.get(key) in value for key, value in filter.items()):
                    docs.append((doc, scores[0][j]))
            else:
                docs.append((doc, scores[0][j]))
        docs = self._tuple_deduplication(docs)
        score_threshold = kwargs.get("score_threshold")
        if score_threshold is not None:
            cmp = (
                operator.ge
                if self.distance_strategy
                in (DistanceStrategy.MAX_INNER_PRODUCT, DistanceStrategy.JACCARD)
                else operator.le
            )
            docs = [
                (doc, similarity)
                for doc, similarity in docs
                if cmp(similarity, score_threshold)
            ]
        
        if "doc_callback" in kwargs:
            if hasattr(kwargs["doc_callback"], 'after_search'):
                docs = kwargs["doc_callback"].after_search(self.docstore,docs,number=k)
        return docs[:k]
    def max_marginal_relevance_search_by_vector(
        self,
        embedding: List[float],
        k: int = 4,
        fetch_k: int = 20,
        lambda_mult: float = 0.5,
        filter: Optional[Dict[str, Any]] = None,
        **kwargs: Any,
    ) -> List[Document]:
        """Return docs selected using the maximal marginal relevance.

        Maximal marginal relevance optimizes for similarity to query AND diversity
        among selected documents.

        Args:
            embedding: Embedding to look up documents similar to.
            k: Number of Documents to return. Defaults to 4.
            fetch_k: Number of Documents to fetch before filtering to
                     pass to MMR algorithm.
            lambda_mult: Number between 0 and 1 that determines the degree
                        of diversity among the results with 0 corresponding
                        to maximum diversity and 1 to minimum diversity.
                        Defaults to 0.5.
        Returns:
            List of Documents selected by maximal marginal relevance.
        """
        docs_and_scores = self.max_marginal_relevance_search_with_score_by_vector(
            embedding, k=k, fetch_k=fetch_k, lambda_mult=lambda_mult, filter=filter
        )
        docs_and_scores = self._tuple_deduplication(docs_and_scores)
        if "doc_callback" in kwargs:
            if hasattr(kwargs["doc_callback"], 'after_search'):
                docs_and_scores = kwargs["doc_callback"].after_search(self.docstore,docs_and_scores,number=k)
        return [doc for doc, _ in docs_and_scores]
    
def getFAISS(embedding_model_name:str,store_path:str,info:dict = None,index_name:str = "index",is_pgsql:bool = True,reset:bool = False) -> RE_FAISS:
    embeddings = GetEmbding(path=embedding_model_name)
    docstore1:PgSqlDocstore = None
    if is_pgsql:
        if info and "host" in info and "dbname" in info and "username" in info and "password" in info:
            docstore1 = PgSqlDocstore(info,reset=reset)
    else:
        docstore1 = InMemorySecondaryDocstore()
    if not path.exists(store_path):
        os.makedirs(store_path,exist_ok=True)
    if store_path is None or len(store_path) <= 0 or not path.exists(path.join(store_path,index_name+".faiss")) or reset:
        print("create new faiss")
        index = faiss.IndexFlatL2(len(embeddings.embed_documents(["a"])[0])) #根据embeddings向量维度设置
        return RE_FAISS(embedding_function=embeddings.client.encode,index=index,docstore=docstore1,index_to_docstore_id={})
    else:
        print("load_local faiss")
        _faiss = RE_FAISS.load_local(folder_path=store_path,index_name=index_name, embeddings=embeddings)
        if docstore1 and is_pgsql:  #如果外部参数调整,更新docstore
            _faiss.docstore = docstore1
        return _faiss
class VectorStore_FAISS(FAISS):
    def __init__(self,  embedding_model_name:str,store_path:str,index_name:str = "index",info:dict = None, is_pgsql:bool = True,show_number = 5, threshold = 0.8, reset:bool = False,doc_callback:DocumentCallback = DefaultDocumentCallback()):
        self.info = info
        self.embedding_model_name = embedding_model_name
        self.store_path = path.join(store_path,index_name)
        if not path.exists(self.store_path):
            os.makedirs(self.store_path,exist_ok=True)
        self.index_name = index_name
        self.show_number = show_number
        self.search_number = self.show_number*3
        self.threshold = threshold
        self._faiss = getFAISS(self.embedding_model_name,self.store_path,info=info,index_name=self.index_name,is_pgsql=is_pgsql,reset=reset)
        self.doc_callback = doc_callback
    
    def get_text_similarity_with_score(self, text:str,**kwargs):
        score_threshold = (1-self.threshold) * math.sqrt(2)
        docs = self._faiss.similarity_search_with_score(query=text,k=self.search_number,score_threshold=score_threshold,doc_callback=self.doc_callback,**kwargs)
        return [doc for doc, similarity in docs][:self.show_number]
    
    def get_text_similarity(self, text:str,**kwargs):
        docs = self._faiss.similarity_search(query=text,k=self.search_number,doc_callback=self.doc_callback,**kwargs)
        return docs[:self.show_number]
    
    # #去重,并保留metadate
    # def _tuple_deduplication(self, tuple_input:List[Document]) -> List[Document]:
    #     deduplicated_dict = OrderedDict()
    #     for doc in tuple_input:
    #         page_content = doc.page_content
    #         metadata = doc.metadata
    #         if page_content not in deduplicated_dict:
    #             deduplicated_dict[page_content] = metadata
        
    #     deduplicated_documents = [Document(page_content=key,metadata=value) for key, value in deduplicated_dict.items()]
    #     return deduplicated_documents
    
    def _join_document(self, docs:List[Document]) -> str:
        print(docs)
        return "".join([doc.page_content for doc in docs])
        
    def get_local_doc(self, docs:List[Document]):
        ans = []
        for doc in docs:
            ans.append({"page_content":doc.page_content, "page_number":doc.metadata["page_number"], "filename":doc.metadata["filename"]})
        return ans

    # def _join_document_location(self, docs:List[Document]) -> str:

    
    # 持久化到本地
    def _save_local(self):
        self._faiss.save_local(folder_path=self.store_path,index_name=self.index_name)
    # 添加文档
    # Document {
    # page_content 段落
    # metadata {
    #    page 页码    
    #    }    
    # }
    def _add_documents(self, new_docs:List[Document],need_split:bool = True,pattern:str =  r'[?。;\n]'):
        list_of_documents:List[Document] = []
        if self.doc_callback:
            new_docs = self.doc_callback.before_store(self._faiss.docstore,new_docs)
        if need_split:
            for doc in new_docs:
                words_list = re.split(pattern, doc.page_content)
                # 去掉重复项
                words_list = set(words_list)
                words_list = [str(words) for words in words_list]
                for words in words_list:
                    if not words.strip() == '':
                        metadata = copy.deepcopy(doc.metadata)
                        metadata["paragraph"] = doc.page_content
                        list_of_documents.append(Document(page_content=words, metadata=metadata))
        else:
            list_of_documents = new_docs
        self._faiss.add_documents(list_of_documents)
    def _add_documents_from_dir(self,filepaths = [],load_kwargs: Optional[dict] = {"mode":"paged"}):
        self._add_documents(load.loads(filepaths,**load_kwargs))
    def as_retriever(self, **kwargs: Any) -> VectorStoreRetriever:
        """
        Return VectorStoreRetriever initialized from this VectorStore.

        Args:
            search_type (Optional[str]): Defines the type of search that
                the Retriever should perform.
                Can be "similarity" (default), "mmr", or
                "similarity_score_threshold".
            search_kwargs (Optional[Dict]): Keyword arguments to pass to the
                search function. Can include things like:
                    k: Amount of documents to return (Default: 4)
                    score_threshold: Minimum relevance threshold
                        for similarity_score_threshold
                    fetch_k: Amount of documents to pass to MMR algorithm (Default: 20)
                    lambda_mult: Diversity of results returned by MMR;
                        1 for minimum diversity and 0 for maximum. (Default: 0.5)
                    filter: Filter by document metadata

        Returns:
            VectorStoreRetriever: Retriever class for VectorStore.

        Examples:

        .. code-block:: python

            # Retrieve more documents with higher diversity
            # Useful if your dataset has many similar documents
            docsearch.as_retriever(
                search_type="mmr",
                search_kwargs={'k': 6, 'lambda_mult': 0.25}
            )

            # Fetch more documents for the MMR algorithm to consider
            # But only return the top 5
            docsearch.as_retriever(
                search_type="mmr",
                search_kwargs={'k': 5, 'fetch_k': 50}
            )

            # Only retrieve documents that have a relevance score
            # Above a certain threshold
            docsearch.as_retriever(
                search_type="similarity_score_threshold",
                search_kwargs={'score_threshold': 0.8}
            )

            # Only get the single most similar document from the dataset
            docsearch.as_retriever(search_kwargs={'k': 1})

            # Use a filter to only retrieve documents from a specific paper
            docsearch.as_retriever(
                search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}}
            )
    """
        if not kwargs or "similarity_score_threshold" != kwargs["search_type"]:
            default_kwargs = {'k': self.show_number}
            if "search_kwargs" in kwargs:
                default_kwargs.update(kwargs["search_kwargs"])
            kwargs["search_kwargs"] = default_kwargs
        elif "similarity_score_threshold" == kwargs["search_type"]:
            default_kwargs = {'score_threshold': self.threshold,'k': self.show_number}
            if "search_kwargs" in kwargs: 
                default_kwargs.update(kwargs["search_kwargs"])
            kwargs["search_kwargs"] = default_kwargs
        kwargs["search_kwargs"]["doc_callback"]=self.doc_callback  
        tags = kwargs.pop("tags", None) or []
        tags.extend(self._faiss._get_retriever_tags())
        print(kwargs)
        return VectorStoreRetriever_FAISS(vectorstore=self._faiss, **kwargs, tags=tags)


class VectorStoreRetriever_FAISS(VectorStoreRetriever):
    search_k = 5
    def __init__(self,**kwargs):
        super().__init__(**kwargs)
        if "k" in self.search_kwargs:
            self.search_k=self.search_kwargs["k"]
            self.search_kwargs["k"]=self.search_k*2
    def _get_relevant_documents(
        self, query: str, *, run_manager: CallbackManagerForRetrieverRun
    ) -> List[Document]:
        docs = super()._get_relevant_documents(query=query,run_manager=run_manager)
        return docs[:self.search_k]
    async def _aget_relevant_documents(
        self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun
    ) -> List[Document]:
        docs = super()._aget_relevant_documents(query=query,run_manager=run_manager)
        return docs[:self.search_k]